Skip to contents

Data

Visual inference study data

polynomials
Results of a visual inference study on reading residual plots of misspecified linear regression model caused by missing Hermite polynomial terms
get_polynomials_lineup()
Download the detailed information of lineups used in the polynomials study

P-value

Functions for caculating p-value in a visual test

sim_dist()
Approximate the distribution of number of detections of a lineup with simulation
exact_dist()
Calculate the exact distribution of number of detections of a lineup
calc_p_value()
Calculate p-value for a visual test
calc_p_value_multi()
Calculate p-value for multiple lineups.
eval_p_value()
Evaluate test for given p-value and significance level

Portals to class instantiate methods

Functions to build an instance

Random variable class

Random variable class

RAND_VAR
RAND_VAR class environment
RAND_VAR$..init..
Initialization method
RAND_VAR$..str..
String representation of the object
RAND_VAR$dist
Distribution name
RAND_VAR$prm
List of parameters
RAND_VAR$set_prm
Generate random values
RAND_VAR$E
Expectation of the random variable
RAND_VAR$Var
Variance of the random variable
RAND_VAR$gen
Generate random values

Random uniform variable class

Random uniform variable class

RAND_UNIFORM
RAND_UNIFORM class environment
RAND_UNIFORM$..init..
Initialization method
RAND_UNIFORM$gen
Generate random values

Random discrete uniform variable class

Random discrete uniform variable class

RAND_UNIFORM_D
RAND_UNIFORM_D class environment
RAND_UNIFORM_D$..init..
Initialization method
RAND_UNIFORM_D$gen
Generate random values

Random normal variable class

Random normal variable class

RAND_NORMAL
RAND_NORMAL class environment
RAND_NORMAL$..init..
Initialization method
RAND_NORMAL$gen
Generate random values

Random log-normal variable class

Random log-normal variable class

RAND_LOGNORMAL
RAND_LOGNORMAL class environment
RAND_LOGNORMAL$..init..
Initialization method
RAND_LOGNORMAL$gen
Generate random values

Random student’s t variable class

Random student’s t variable class

RAND_T
RAND_T class environment
RAND_T$..init..
Initialization method
RAND_T$gen
Generate random values

Closed form expression class

Closed form expression class

CLOSED_FORM
CLOSED_FORM class environment
CLOSED_FORM$..init..
Initialization method
CLOSED_FORM$..str..
String representation of the object
CLOSED_FORM$..len..
Length of the object
CLOSED_FORM$ast
Abstract syntax tree of the expression
CLOSED_FORM$sym
List of symbols in the abstract syntax tree of the expression
CLOSED_FORM$sym_name
List of symbol names in the abstract syntax tree of the expression
CLOSED_FORM$sym_type
List of symbol types in the abstract syntax tree of the expression
CLOSED_FORM$expr
Expression extracted from the provided formula
CLOSED_FORM$set_sym
Set values for symbols
CLOSED_FORM$set_expr
Set the closed form expression
CLOSED_FORM$compute
Compute the expression without generating any random values
CLOSED_FORM$gen
Generating random values from the expression
CLOSED_FORM$as_dataframe
Transforming list to data frame

Visual inference linear model class

Visual inference linear model class

VI_MODEL
VI_MODEL class environment
VI_MODEL$..init..
Initialization method
VI_MODEL$..str..
String representation of the object
VI_MODEL$..cache..
Cache list, containing the last fitted model, data frame and formula
VI_MODEL$prm
List of parameters
VI_MODEL$prm_type
List of parameter types
VI_MODEL$formula
Closed form expression of y
VI_MODEL$null_formula
Formula for fitting the null model
VI_MODEL$alt_formula
Formula for fitting the alternative model
VI_MODEL$set_formula
Set formula for y, null model or alternative model
VI_MODEL$set_prm
Set parameter for the model
VI_MODEL$test
Test the null model against the alternative model
VI_MODEL$fit
Test the null model against the alternative model
VI_MODEL$average_effect_size
Compute the effect size of the simulated data or the defined model
VI_MODEL$sample_effect_size
Compute the sample based effect size of the simulated data of the defined model
VI_MODEL$gen
Generating random values from the expression of y
VI_MODEL$gen_lineup
Generating random values from the expression of y, and forms a lineup
VI_MODEL$null_resid
Generate null residuals from a null model
VI_MODEL$plot
Plot the fitted model
VI_MODEL$plot_resid
Plot the residuals vs fitted values plot
VI_MODEL$plot_qq
Plot the residual Q-Q plot
VI_MODEL$plot_lineup
Plot the lineup
VI_MODEL$rss
Residual sum of square of a fitted model

Visual inference cubic linear model class

Visual inference cubic linear model class

CUBIC_MODEL
CUBIC_MODEL class environment
CUBIC_MODEL$..init..
Initialization method
CUBIC_MODEL$formula
Closed form expression of y
CUBIC_MODEL$null_formula
Formula for fitting the null model
CUBIC_MODEL$alt_formula
Formula for fitting the alternative model
CUBIC_MODEL$set_prm
Set parameter for the model
CUBIC_MODEL$E
Expectation of the residuals
CUBIC_MODEL$sample_effect_size
Compute the sample baased effect size of the simulated data

Visual inference simple cubic linear model class

Visual inference simple cubic linear model class

SIMPLE_CUBIC_MODEL
SIMPLE_CUBIC_MODEL class environment
SIMPLE_CUBIC_MODEL$..init..
Initialization method
SIMPLE_CUBIC_MODEL$formula
Closed form expression of y
SIMPLE_CUBIC_MODEL$null_formula
Formula for fitting the null model
SIMPLE_CUBIC_MODEL$alt_formula
Formula for fitting the alternative model
SIMPLE_CUBIC_MODEL$set_prm
Set parameter for the model
SIMPLE_CUBIC_MODEL$E
Expectation of the residuals
SIMPLE_CUBIC_MODEL$sample_effect_size
Compute the sample based effect size of the simulated data

Visual inference quartic linear model class

Visual inference quartic linear model class

QUARTIC_MODEL
QUARTIC_MODEL class environment
QUARTIC_MODEL$..init..
Initialization method
QUARTIC_MODEL$formula
Closed form expression of y
QUARTIC_MODEL$null_formula
Formula for fitting the null model
QUARTIC_MODEL$alt_formula
Formula for fitting the alternative model
QUARTIC_MODEL$set_prm
Set parameter for the model
QUARTIC_MODEL$E
Expectation of the residuals
QUARTIC_MODEL$sample_effect_size
Compute the sample based effect size of the simulated data

Visual inference orthogonal polynomial model class

Visual inference orthogonal polynomial linear model class

POLY_MODEL
POLY_MODEL class environment
POLY_MODEL$..init..
Initialization method
POLY_MODEL$formula
Closed form expression of y
POLY_MODEL$null_formula
Formula for fitting the null model
POLY_MODEL$alt_formula
Formula for fitting the alternative model
POLY_MODEL$raw_z_formula
Formula for the raw orthogonal polynomial term raw_z
POLY_MODEL$z_formula
Formula for the scaled orthogonal polynomial term z
POLY_MODEL$set_prm
Set parameter for the model
POLY_MODEL$test
Test the null model
POLY_MODEL$E
Expectation of the residuals
POLY_MODEL$sample_effect_size
Compute the sample based effect size of the simulated data
POLY_MODEL$hermite
Hermite polynomial functions

Visual inference heteroskedasticity linear model class

Visual inference heteroskedasticity linear model class

HETER_MODEL
HETER_MODEL class environment
HETER_MODEL$..init..
Initialization method
HETER_MODEL$formula
Closed form expression of y
HETER_MODEL$null_formula
Formula for fitting the null model
HETER_MODEL$alt_formula
Formula for fitting the alternative model
HETER_MODEL$test
Test the null model
HETER_MODEL$sample_effect_size
Compute the sample based effect size of the simulated data

Visual inference autoregressive (1) linear model class

Visual inference autoregressive (1) linear model class

AR1_MODEL
AR1_MODEL class environment
AR1_MODEL$..init..
Initialization method

Visual inference non-normal linear model class

Visual inference non-normal linear model class

NON_NORMAL_MODEL
NON_NORMAL_MODEL class environment
NON_NORMAL_MODEL$..init..
Initialization method