Skip to contents

This function will be called after an instance is built. User input will be stored in the environment. The response variable of this model is y. The formula of y is defined in HETER_MODEL$formula, the null formula is defined in HETER_MODEL$null_formula.

Arguments

a

Numeric. Default is a = 0.

b

Numeric. Default is b = 1.

x

Random variable or closed form expression. Default is x = rand_uniform(-1, 1, env = new.env(parent = parent.env(self))).

e

Random variable or closed form expression. Default is e = rand_normal(0, 1, env = new.env(parent = parent.env(self))).

Value

Return the object itself.

Examples


# Instantiate
test <- heter_model(a = 0, b = 20)

test
#> 
#> ── <HETER_MODEL object>
#> y = 1 + x + sqrt(1 + (2 - abs(a)) * (x - a)^2 * b) * e
#>  - x: <RAND_UNIFORM object>
#>    [a: -1, b: 1]
#>  - e: <RAND_NORMAL object>
#>    [mu: 0, sigma: 1]
#> Parameters:
#>  - a: 0
#>  - b: 20 

# Generate data
test$gen(10)
#>             y          x          e     .resid   .fitted
#> 1   3.7910489  0.3085354  1.1321921  2.1870174 1.6040315
#> 2   2.0431958  0.8577522  0.0336174 -0.1517121 2.1949079
#> 3   4.6438956 -0.8441994  0.8262286  4.2800369 0.3638587
#> 4  -0.3796699 -0.3955702 -0.3652580 -1.2261875 0.8465176
#> 5  -5.3437042 -0.7955397 -1.0815457 -5.7599135 0.4162093
#> 6   4.3652842 -0.3533806  1.5187571  3.4733767 0.8919074
#> 7  -1.0329121 -0.3253130 -0.7464567 -1.9550161 0.9221040
#> 8  -0.2426286  0.5883926 -0.4751776 -2.1477453 1.9051167
#> 9   4.8129207 -0.7120485  0.9808994  4.3068871 0.5060335
#> 10 -2.7805898 -0.9721954 -0.4508224 -3.0067436 0.2261538

# Generate lineup
test$gen_lineup(10, k = 3)
#>              y           x           e       .resid   .fitted test_name
#> 1   3.23852596  0.41177906  0.65481615  2.866709354 0.3718166   BP-test
#> 2   1.50832328 -0.08641925  0.52187839  1.006945284 0.5013780   BP-test
#> 3   0.24122020 -0.42833001 -0.11443457 -0.349075065 0.5902953   BP-test
#> 4   1.52595469  0.57330265 -0.01258834  1.196143891 0.3298108   BP-test
#> 5   0.58233618 -0.99922370  0.09089323 -0.156425626 0.7387618   BP-test
#> 6   0.55951863  0.94997310 -0.22828732  0.327664697 0.2318539   BP-test
#> 7  -3.94335276  0.30007383 -2.44428945 -4.344219415 0.4008667   BP-test
#> 8  -1.42627450  0.77649787 -0.63904863 -1.703242378 0.2769679   BP-test
#> 9   4.30100941  0.52043656  0.80828664  3.957450262 0.3435592   BP-test
#> 10 -2.49287159  0.65302041 -0.97564103 -2.801951004 0.3090794   BP-test
#> 11  4.32796204  0.41177906  0.65481615  3.956145437 0.3718166   BP-test
#> 12  3.22909096 -0.08641925  0.52187839  2.727712961 0.5013780   BP-test
#> 13 -0.96324678 -0.42833001 -0.11443457 -1.553542046 0.5902953   BP-test
#> 14 -0.02111171  0.57330265 -0.01258834 -0.350922516 0.3298108   BP-test
#> 15 -0.13512099 -0.99922370  0.09089323 -0.873882798 0.7387618   BP-test
#> 16 -3.21496999  0.94997310 -0.22828732 -3.446823928 0.2318539   BP-test
#> 17  0.17324743  0.30007383 -2.44428945 -0.227619220 0.4008667   BP-test
#> 18  3.30407606  0.77649787 -0.63904863  3.027108178 0.2769679   BP-test
#> 19 -2.59062780  0.52043656  0.80828664 -2.934186950 0.3435592   BP-test
#> 20 -0.01490971  0.65302041 -0.97564103 -0.323989120 0.3090794   BP-test
#> 21 -2.50129275  0.41177906  0.65481615 -2.873109358 0.3718166   BP-test
#> 22  1.89676394 -0.08641925  0.52187839  1.395385944 0.5013780   BP-test
#> 23  0.59721766 -0.42833001 -0.11443457  0.006922392 0.5902953   BP-test
#> 24  4.22712014  0.57330265 -0.01258834  3.897309333 0.3298108   BP-test
#> 25  0.31728483 -0.99922370  0.09089323 -0.421476973 0.7387618   BP-test
#> 26 -0.84355220  0.94997310 -0.22828732 -1.075406131 0.2318539   BP-test
#> 27 -2.59579687  0.30007383 -2.44428945 -2.996663529 0.4008667   BP-test
#> 28 -1.60447120  0.77649787 -0.63904863 -1.881439081 0.2769679   BP-test
#> 29  4.45811516  0.52043656  0.80828664  4.114556004 0.3435592   BP-test
#> 30  0.14300081  0.65302041 -0.97564103 -0.166078602 0.3090794   BP-test
#>    statistic   p_value k  null
#> 1   2.614535 0.2705583 3 FALSE
#> 2   2.614535 0.2705583 3 FALSE
#> 3   2.614535 0.2705583 3 FALSE
#> 4   2.614535 0.2705583 3 FALSE
#> 5   2.614535 0.2705583 3 FALSE
#> 6   2.614535 0.2705583 3 FALSE
#> 7   2.614535 0.2705583 3 FALSE
#> 8   2.614535 0.2705583 3 FALSE
#> 9   2.614535 0.2705583 3 FALSE
#> 10  2.614535 0.2705583 3 FALSE
#> 11  1.539717 0.4630786 1  TRUE
#> 12  1.539717 0.4630786 1  TRUE
#> 13  1.539717 0.4630786 1  TRUE
#> 14  1.539717 0.4630786 1  TRUE
#> 15  1.539717 0.4630786 1  TRUE
#> 16  1.539717 0.4630786 1  TRUE
#> 17  1.539717 0.4630786 1  TRUE
#> 18  1.539717 0.4630786 1  TRUE
#> 19  1.539717 0.4630786 1  TRUE
#> 20  1.539717 0.4630786 1  TRUE
#> 21  2.451625 0.2935191 2  TRUE
#> 22  2.451625 0.2935191 2  TRUE
#> 23  2.451625 0.2935191 2  TRUE
#> 24  2.451625 0.2935191 2  TRUE
#> 25  2.451625 0.2935191 2  TRUE
#> 26  2.451625 0.2935191 2  TRUE
#> 27  2.451625 0.2935191 2  TRUE
#> 28  2.451625 0.2935191 2  TRUE
#> 29  2.451625 0.2935191 2  TRUE
#> 30  2.451625 0.2935191 2  TRUE

# Plot the lineup
test$plot_lineup(test$gen_lineup(100))