Skip to contents

This function store the values in the environment and update their values in the closed form expression of y, except the parameter sigma, shape and raw_z. For parameter sigma, its value will be updated, and the corresponding value in e will be updated. For parameter shape, its value will be updated, and the corresponding value in raw_z will be updated. For parameter raw_z, its value will be updated, and the corresponding value in z will be updated.

Arguments

prm_name

List or Vector. Parameter character names.

prm_val

List or Vector. Parameter values.

Value

Return the object itself.

Examples


# Instantiate
mod <- poly_model(shape = 2, sigma = 0.5)

mod
#> 
#> ── <POLY_MODEL object>
#> y = 1 + x + include_z * z + e
#>  - x: <RAND_UNIFORM object>
#>    [a: -1, b: 1]
#>  - z: <CLOSED_FORM object>
#>    EXPR = (raw_z - min(raw_z))/max(raw_z - min(raw_z)) * 2 - 1
#>     - raw_z: <CLOSED_FORM object>
#>       EXPR = hermite(shape)((x - min(x))/max(x - min(x)) * 4 - 2)
#>        - x: <RAND_UNIFORM object>
#>          [a: -1, b: 1]
#>  - e: <RAND_NORMAL object>
#>    [mu: 0, sigma: 0.5]
#> Parameters:
#>  - shape: 2
#>  - include_z: TRUE
#>  - sigma: 0.5 

mod$set_prm("shape", 4)

mod
#> 
#> ── <POLY_MODEL object>
#> y = 1 + x + include_z * z + e
#>  - x: <RAND_UNIFORM object>
#>    [a: -1, b: 1]
#>  - z: <CLOSED_FORM object>
#>    EXPR = (raw_z - min(raw_z))/max(raw_z - min(raw_z)) * 2 - 1
#>     - raw_z: <CLOSED_FORM object>
#>       EXPR = hermite(shape)((x - min(x))/max(x - min(x)) * 4 - 2)
#>        - x: <RAND_UNIFORM object>
#>          [a: -1, b: 1]
#>  - e: <RAND_NORMAL object>
#>    [mu: 0, sigma: 0.5]
#> Parameters:
#>  - shape: 4
#>  - include_z: TRUE
#>  - sigma: 0.5 

mod$set_prm("sigma", 1)

mod
#> 
#> ── <POLY_MODEL object>
#> y = 1 + x + include_z * z + e
#>  - x: <RAND_UNIFORM object>
#>    [a: -1, b: 1]
#>  - z: <CLOSED_FORM object>
#>    EXPR = (raw_z - min(raw_z))/max(raw_z - min(raw_z)) * 2 - 1
#>     - raw_z: <CLOSED_FORM object>
#>       EXPR = hermite(shape)((x - min(x))/max(x - min(x)) * 4 - 2)
#>        - x: <RAND_UNIFORM object>
#>          [a: -1, b: 1]
#>  - e: <RAND_NORMAL object>
#>    [mu: 0, sigma: 1]
#> Parameters:
#>  - shape: 4
#>  - include_z: TRUE
#>  - sigma: 1