Function reference
Pre-trained computer vision models
Pre-trained computer vision models for visual signal strength prediction
-
list_keras_model()
- List all available pre-trained computer vision models
-
get_keras_model()
- Download and load the keras model
-
keras_wrapper()
- KERAS_WRAPPER class environment
-
KERAS_WRAPPER$..init..
- Initialization method
-
KERAS_WRAPPER$..str..
- String representation of the object
-
KERAS_WRAPPER$get_input_height
- Get keras model input image height
-
KERAS_WRAPPER$get_input_width
- Get keras model input image width
-
KERAS_WRAPPER$image_to_array
- Load an image as numpy array
-
KERAS_WRAPPER$list_layer_name
- List all layer names
-
KERAS_WRAPPER$predict
- Predict visual signal strength
-
auto_vi()
residual_checker()
- AUTO_VI class environment
-
AUTO_VI$..init..
- Initialization method
-
AUTO_VI$..str..
- String representation of the object
-
AUTO_VI$get_fitted_and_resid
- Get fitted values and residuals out of a model object
-
AUTO_VI$get_data
- Get data out of a model object
-
AUTO_VI$plot_resid
- Draw a standard residual plot
-
AUTO_VI$plot_pair
- Draw a pair of standard residual plots
-
AUTO_VI$plot_lineup
- Draw a lineup of standard residual plots
-
AUTO_VI$save_plot
- Save plot(s)
-
AUTO_VI$vss
- Predict the visual signal strength
-
AUTO_VI$rotate_resid
- Get rotated residuals from a fitted linear model
-
AUTO_VI$null_method
- Get null residuals from a fitted model
-
AUTO_VI$boot_method
- Get bootstrapped residuals from a fitted model
-
AUTO_VI$null_vss
- Simulate null plots and predict the visual signal strength
-
AUTO_VI$boot_vss
- Predict visual signal strength for bootstrapped residual plots
-
AUTO_VI$check
- Conduct a auto visual inference check with a computer vision model
-
AUTO_VI$lineup_check
- Conduct a auto visual inference lineup check with a computer vision model
-
AUTO_VI$check_result
- List of diagnostic results
-
AUTO_VI$likelihood_ratio
- Compute the likelihood ratio using the simulated result
-
AUTO_VI$auxiliary
- Compute auxiliary variables for the keras model
-
AUTO_VI$p_value
- Compute the p-value based on the check result
-
AUTO_VI$summary
- Summary of the object
-
AUTO_VI$summary_plot
- Draw a summary plot for the result
-
AUTO_VI$summary_density_plot
- Draw a summary density plot for the result
-
AUTO_VI$summary_rank_plot
- Draw a summary rank plot for the result
-
AUTO_VI$feature_pca
- Conduct principal component analysis for features extracted from keras model
-
AUTO_VI$feature_pca_plot
- Draw a summary Plot for principal component analysis conducted on extracted features
-
check_python_library_available()
- Check python library availability
-
save_plot()
- Save plot(s)
-
remove_plot()
- Remove a plot