Skip to contents

Pre-trained computer vision models

Pre-trained computer vision models for visual signal strength prediction

list_keras_model()
List all available pre-trained computer vision models
get_keras_model()
Download and load the keras model

Keras model wrapper class

Keras model wrapper class

keras_wrapper()
KERAS_WRAPPER class environment
KERAS_WRAPPER$..init..
Initialization method
KERAS_WRAPPER$..str..
String representation of the object
KERAS_WRAPPER$get_input_height
Get keras model input image height
KERAS_WRAPPER$get_input_width
Get keras model input image width
KERAS_WRAPPER$image_to_array
Load an image as numpy array
KERAS_WRAPPER$list_layer_name
List all layer names
KERAS_WRAPPER$predict
Predict visual signal strength

Auto visual inference class

Auto visual inference class

auto_vi() residual_checker()
AUTO_VI class environment
AUTO_VI$..init..
Initialization method
AUTO_VI$..str..
String representation of the object
AUTO_VI$get_fitted_and_resid
Get fitted values and residuals out of a model object
AUTO_VI$get_data
Get data out of a model object
AUTO_VI$plot_resid
Draw a standard residual plot
AUTO_VI$plot_pair
Draw a pair of standard residual plots
AUTO_VI$plot_lineup
Draw a lineup of standard residual plots
AUTO_VI$save_plot
Save plot(s)
AUTO_VI$vss
Predict the visual signal strength
AUTO_VI$rotate_resid
Get rotated residuals from a fitted linear model
AUTO_VI$null_method
Get null residuals from a fitted model
AUTO_VI$boot_method
Get bootstrapped residuals from a fitted model
AUTO_VI$null_vss
Simulate null plots and predict the visual signal strength
AUTO_VI$boot_vss
Predict visual signal strength for bootstrapped residual plots
AUTO_VI$check
Conduct a auto visual inference check with a computer vision model
AUTO_VI$lineup_check
Conduct a auto visual inference lineup check with a computer vision model
AUTO_VI$check_result
List of diagnostic results
AUTO_VI$likelihood_ratio
Compute the likelihood ratio using the simulated result
AUTO_VI$auxiliary
Compute auxiliary variables for the keras model
AUTO_VI$p_value
Compute the p-value based on the check result
AUTO_VI$summary
Summary of the object
AUTO_VI$summary_plot
Draw a summary plot for the result
AUTO_VI$summary_density_plot
Draw a summary density plot for the result
AUTO_VI$summary_rank_plot
Draw a summary rank plot for the result
AUTO_VI$feature_pca
Conduct principal component analysis for features extracted from keras model
AUTO_VI$feature_pca_plot
Draw a summary Plot for principal component analysis conducted on extracted features

Utilties

Utilties

check_python_library_available()
Check python library availability
save_plot()
Save plot(s)
remove_plot()
Remove a plot