Function reference
Pre-trained computer vision models
Pre-trained computer vision models for visual signal strength prediction
-
list_keras_model() - List all available pre-trained computer vision models
-
get_keras_model() - Download and load the keras model
-
keras_wrapper() - KERAS_WRAPPER class environment
-
KERAS_WRAPPER$..init.. - Initialization method
-
KERAS_WRAPPER$..str.. - String representation of the object
-
KERAS_WRAPPER$get_input_height - Get keras model input image height
-
KERAS_WRAPPER$get_input_width - Get keras model input image width
-
KERAS_WRAPPER$image_to_array - Load an image as numpy array
-
KERAS_WRAPPER$list_layer_name - List all layer names
-
KERAS_WRAPPER$predict - Predict visual signal strength
-
auto_vi()residual_checker() - AUTO_VI class environment
-
AUTO_VI$..init.. - Initialization method
-
AUTO_VI$..str.. - String representation of the object
-
AUTO_VI$get_fitted_and_resid - Get fitted values and residuals out of a model object
-
AUTO_VI$get_data - Get data out of a model object
-
AUTO_VI$plot_resid - Draw a standard residual plot
-
AUTO_VI$plot_pair - Draw a pair of standard residual plots
-
AUTO_VI$plot_lineup - Draw a lineup of standard residual plots
-
AUTO_VI$save_plot - Save plot(s)
-
AUTO_VI$vss - Predict the visual signal strength
-
AUTO_VI$rotate_resid - Get rotated residuals from a fitted linear model
-
AUTO_VI$null_method - Get null residuals from a fitted model
-
AUTO_VI$boot_method - Get bootstrapped residuals from a fitted model
-
AUTO_VI$null_vss - Simulate null plots and predict the visual signal strength
-
AUTO_VI$boot_vss - Predict visual signal strength for bootstrapped residual plots
-
AUTO_VI$check - Conduct a auto visual inference check with a computer vision model
-
AUTO_VI$lineup_check - Conduct a auto visual inference lineup check with a computer vision model
-
AUTO_VI$check_result - List of diagnostic results
-
AUTO_VI$likelihood_ratio - Compute the likelihood ratio using the simulated result
-
AUTO_VI$auxiliary - Compute auxiliary variables for the keras model
-
AUTO_VI$p_value - Compute the p-value based on the check result
-
AUTO_VI$summary - Summary of the object
-
AUTO_VI$summary_plot - Draw a summary plot for the result
-
AUTO_VI$summary_density_plot - Draw a summary density plot for the result
-
AUTO_VI$summary_rank_plot - Draw a summary rank plot for the result
-
AUTO_VI$feature_pca - Conduct principal component analysis for features extracted from keras model
-
AUTO_VI$feature_pca_plot - Draw a summary Plot for principal component analysis conducted on extracted features
-
check_python_library_available() - Check python library availability
-
save_plot() - Save plot(s)
-
remove_plot() - Remove a plot