Simulate null plots and predict the visual signal strength
Source:R/zzz_auto_visual_inference.R
AUTO_VI-cash-null_vss.Rd
This function simulates null plots from the null hypothesis distribution, and predicts the visual signal strength.
Arguments
- draws
Integer. Number of simulation draws.
- fitted_model
Model. A model object, e.g.
lm
.- keras_model
Keras model. A trained computer vision model.
- null_method
Function. A method to simulate residuals from the null hypothesis distribution. For
lm
, the recommended method is residual rotationAUTO_VI$rotate_resid()
.- node_index
Integer. An index indicating which node of the output layer contains the visual signal strength. This is particularly useful when the keras model has more than one output nodes.
- keep_null_data
Boolean. Whether to keep the simulated null data.
- keep_null_plot
Boolean. Whether to keep the simulated null plots.
- extract_feature_from_layer
Character/Integer. A layer name or an integer layer index for extracting features from a layer.
Examples
keras_model <- try(get_keras_model("vss_phn_32"))
if (!inherits(keras_model, "try-error")) {
myvi <- auto_vi(lm(dist ~ speed, data = cars), keras_model)
myvi$null_vss()
}
#> ✔ Generate null data.
#> ✔ Generate null plots.
#> Computing auxiliary inputs ■■■■■■■■■■■ 35% | ETA: 2s
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■■■■■■■■ 72% | ETA: 1s
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Compute auxilary inputs.
#> Saving images ■■■■■■■■■■■■■■■■■■■■ 64% | ETA: 1s
#> Saving images ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Predict visual signal strength for 100 images.
#> # A tibble: 100 × 1
#> vss
#> <dbl>
#> 1 3.00
#> 2 0.608
#> 3 0.971
#> 4 1.15
#> 5 1.21
#> 6 1.03
#> 7 0.918
#> 8 1.30
#> 9 1.25
#> 10 1.22
#> # ℹ 90 more rows