The AUTO_VI$..str..()
method provides a string
representation of the object. If a check is performed, the string
will contain some simple statistics of the check result. This method
does this same thing as AUTO_VI$..str..()
, but it returns an
AUTO_VI_SUMMARY
object which stores those statistics, such as sample
quantiles of the distribution of null visual signal strength, in the object.
Examples
keras_model <- try(get_keras_model("vss_phn_32"))
if (!inherits(keras_model, "try-error")) {
myvi <- auto_vi(lm(dist ~ speed, data = cars), keras_model)
myvi$check()
myvi_summary <- myvi$summary()
print(myvi_summary)
names(myvi_summary)
}
#> ✔ Generate null data.
#> ✔ Generate null plots.
#> Computing auxiliary inputs ■■■■■■■■■■ 31% | ETA: 2s
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■■■■■ 64% | ETA: 1s
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Compute auxilary inputs.
#> Saving images ■■■■■■■■■■■■■■ 43% | ETA: 2s
#> Saving images ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Predict visual signal strength for 100 images.
#> ✔ Generate bootstrapped data.
#> ✔ Generate bootstrapped plots.
#> Warning: Problem in area computation (Returns NA)
#> Warning: triangle collapsed!
#> Warning: three points coincide or are collinear!
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■ 45% | ETA: 1s
#> Warning: no non-missing arguments to min; returning Inf
#> Warning: Problem in area computation (Returns NA)
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Compute auxilary inputs.
#> Saving images ■■■■■■■■■■■■ 37% | ETA: 2s
#> Saving images ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Predict visual signal strength for 100 images.
#> ✔ Predict visual signal strength for 1 image.
#>
#> ── <AUTO_VI_SUMMARY object>
#> Status:
#> - Fitted model: lm
#> - Keras model: (None, 32, 32, 3) + (None, 5) -> (None, 1)
#> - Output node index: 1
#> - Result:
#> - Observed visual signal strength: 3.162 (p-value = 0.0495)
#> - Null visual signal strength: [100 draws]
#> - Mean: 1.469
#> - Quantiles:
#> ╔═════════════════════════════════════════════════╗
#> ║ 25% 50% 75% 80% 90% 95% 99% ║
#> ║0.9556 1.3271 1.7486 1.8066 2.3116 2.9083 3.4890 ║
#> ╚═════════════════════════════════════════════════╝
#> - Bootstrapped visual signal strength: [100 draws]
#> - Mean: 2.682 (p-value = 0.06931)
#> - Quantiles:
#> ╔══════════════════════════════════════════╗
#> ║ 25% 50% 75% 80% 90% 95% 99% ║
#> ║2.314 2.839 3.269 3.316 3.463 3.544 3.600 ║
#> ╚══════════════════════════════════════════╝
#> - Likelihood ratio: 0.5769 (boot) / 0.05851 (null) = 9.861
#> [1] "null_likelihood" "..method_env.." "observed_vss" "null_quantiles"
#> [5] "del_attr" "..mro.." "..repr.." "has_attr"
#> [9] "boot_quantiles" "null_draws" "get_attr" "boot_draws"
#> [13] "..instantiated.." "..class_tree.." "..init.." "..methods.."
#> [17] "boot_mean" "boot_p_value" "p_value" "null_mean"
#> [21] "..class.." "..type.." "..dir.." "..bases.."
#> [25] "boot_likelihood" "..new.." "..init_call.." "set_attr"
#> [29] "..str.." "summary_string" "likelihood_ratio" "..len.."