The AUTO_VI$..str..() method provides a string
representation of the object. If a check is performed, the string
will contain some simple statistics of the check result. This method
does this same thing as AUTO_VI$..str..(), but it returns an
AUTO_VI_SUMMARY object which stores those statistics, such as sample
quantiles of the distribution of null visual signal strength, in the object.
Examples
keras_model <- try(get_keras_model("vss_phn_32"))
if (!inherits(keras_model, "try-error")) {
myvi <- auto_vi(lm(dist ~ speed, data = cars), keras_model)
myvi$check()
myvi_summary <- myvi$summary()
print(myvi_summary)
names(myvi_summary)
}
#> ✔ Generate null data.
#> ✔ Generate null plots.
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■ 46% | ETA: 1s
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Compute auxilary inputs.
#> Saving images ■■■■■■■■■■■■■■ 44% | ETA: 1s
#> Saving images ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Predict visual signal strength for 100 images.
#> ✔ Generate bootstrapped data.
#> ✔ Generate bootstrapped plots.
#> Warning: Problem in area computation (Returns NA)
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■ 49% | ETA: 1s
#> Warning: Problem in area computation (Returns NA)
#> Warning: triangle collapsed!
#> Warning: three points coincide or are collinear!
#> Computing auxiliary inputs ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Compute auxilary inputs.
#> Saving images ■■■■■■■■■■■■■■■■■■■■■■■■■ 81% | ETA: 0s
#> Saving images ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 100% | ETA: 0s
#> ✔ Predict visual signal strength for 100 images.
#> ✔ Predict visual signal strength for 1 image.
#>
#> ── <AUTO_VI_SUMMARY object>
#> Status:
#> - Fitted model: lm
#> - Keras model: (None, 32, 32, 3) + (None, 5) -> (None, 1)
#> - Output node index: 1
#> - Result:
#> - Observed visual signal strength: 3.16 (p-value = 0.0396)
#> - Null visual signal strength: [100 draws]
#> - Mean: 1.36
#> - Quantiles:
#> ╔═════════════════════════════════════════════════╗
#> ║ 25% 50% 75% 80% 90% 95% 99% ║
#> ║0.8376 1.2136 1.7898 1.8466 2.0764 2.6935 3.5908 ║
#> ╚═════════════════════════════════════════════════╝
#> - Bootstrapped visual signal strength: [100 draws]
#> - Mean: 2.759 (p-value = 0.05941)
#> - Quantiles:
#> ╔══════════════════════════════════════════╗
#> ║ 25% 50% 75% 80% 90% 95% 99% ║
#> ║2.459 2.898 3.180 3.262 3.453 3.519 3.617 ║
#> ╚══════════════════════════════════════════╝
#> - Likelihood ratio: 0.7172 (boot) / 0.04044 (null) = 17.74
#> [1] "..methods.." "has_attr" "del_attr" "..bases.."
#> [5] "..mro.." "..init.." "null_likelihood" "null_quantiles"
#> [9] "boot_likelihood" "p_value" "observed_vss" "boot_p_value"
#> [13] "null_mean" "..type.." "boot_quantiles" "..class.."
#> [17] "summary_string" "..dir.." "boot_mean" "..new.."
#> [21] "..class_tree.." "..repr.." "set_attr" "null_draws"
#> [25] "..method_env.." "..instantiated.." "likelihood_ratio" "..str.."
#> [29] "..init_call.." "get_attr" "..len.." "boot_draws"