This function predicts the visual signal strength.
Arguments
- p
ggplot
/List/Data.frame/Array/Numpy array/String. The input can bea
ggplot
,a list of
ggplot
,a data.frame containing
.resid
(residuals) and.fitted
(fitted values) that can be passed toAUTO_VI$plot_resid()
,a 3D array representing an image,
a 4D array representing one or more images,
a path to an image,
a vector or a list of paths to images,
a numpy array.
- auxiliary
Dataframe. A dataframe of auxiliary values. This is only used when the keras model has multiple inputs. If it is not provided, the values will be automatically computed based on the residual plot of the fitted model. See also
AUTO_VI$auxiliary()
.- keras_model
Keras model. A trained computer vision model.
- node_index
Integer. An index indicating which node of the output layer contains the visual signal strength. This is particularly useful when the keras model has more than one output nodes.
- extract_feature_from_layer
Character/Integer. A layer name or an integer layer index for extracting features from a layer.
Value
A tibble. The first column is vss
which is the prediction, the
rest of the columns are features extracted from a layer.
Examples
keras_model <- try(get_keras_model("vss_phn_32"))
if (!inherits(keras_model, "try-error")) {
myvi <- auto_vi(lm(dist ~ speed, data = cars), keras_model)
myvi$vss()
}
#> ✔ Predict visual signal strength for 1 image.
#> # A tibble: 1 × 1
#> vss
#> <dbl>
#> 1 3.16