Skip to contents

This function finds noise from the clustering results and label it with -1.

Usage

handle_noise(global_membership, timeID, minPts, minTime)

Arguments

global_membership

Integer. A vector of membership labels.

timeID

Integer. A vector of time indexes.

minPts

Numeric (>0). Minimum number of hot spots in a cluster.

minTime

Numeric (>=0). Minimum length of time of a cluster. Unit is time index.

Value

Integer. A vector of membership labels.

Details

For more details about the clustering algorithm and the arguments minPts and minTime, please check the documentation of hotspot_cluster(). This function performs the step 4 of the clustering algorithm. It uses a given threshold (minimum number of points and minimum length of time) to find noise and label it with -1.

Examples


# Define membership labels and timeID for 10 observations
global_membership <- c(1,1,1,2,2,2,2,2,2,3,3,3,3,3,3)
timeID <- c(1,2,3,2,3,3,4,5,6,3,3,3,3,3,3)

# Handle noise with different values of minPts and minTime
handle_noise(global_membership, timeID, 4, 0)
#> 
#> ── minPts = 4 hot spots | minTime = 0 time indexes 
#>  Handle noise
#>  2 clusters left
#>  noise proportion : 20 %
#>  [1] -1 -1 -1  1  1  1  1  1  1  2  2  2  2  2  2
handle_noise(global_membership, timeID, 4, 1)
#> 
#> ── minPts = 4 hot spots | minTime = 1 time index 
#>  Handle noise
#>  1 cluster left
#>  noise proportion : 60 %
#>  [1] -1 -1 -1  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1
handle_noise(global_membership, timeID, 3, 3)
#> 
#> ── minPts = 3 hot spots | minTime = 3 time indexes 
#>  Handle noise
#>  1 cluster left
#>  noise proportion : 60 %
#>  [1] -1 -1 -1  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1